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Abstract

Biomedical ontologies are large: Several ontologies in the BioPortal repository contain thousands or
even hundreds of thousands of entities. The development and maintenance of such large ontologies is
difficult. To support ontology authors and repository developers in their work, it is crucial to improve our
understanding of how these ontologies are explored, queried, reused, and used in downstream applications
by biomedical researchers. We present an exploratory empirical analysis of user activities in the BioPortal
ontology repository by analyzing BioPortal interaction logs across different access modes over several years.
We investigate how users of BioPortal query and search for ontologies and their classes, how they explore
the ontologies, and how they reuse classes from different ontologies. Additionally, through three real-
world scenarios, we not only analyze the usage of ontologies for annotation tasks but also compare it to
the browsing and querying behaviors of BioPortal users. For our investigation, we use several different
visualization techniques. To inspect large amounts of interaction, reuse, and real-world usage data at a
glance, we make use of and extend PolygOnto, a visualization method that has been successfully used to
analyze reuse of ontologies in previous work. Our results show that exploration, query, reuse, and actual
usage behaviors rarely align, suggesting that different users tend to explore, query and use different parts of
an ontology. Finally, we highlight and discuss differences and commonalities among users of BioPortal.

Keywords: data visualization, ontology reuse, ontology exploration, user behavior, knowledge exploration,
log analysis

1. Exploring Empirical Usage of Ontologies

Biomedical researchers have adopted ontologies
for use in various tasks, such as knowledge man-
agement, data annotation, data integration, data
exchange, decision support, and reasoning [1, 2].
These ontologies, which often serve as standard vo-
cabularies for a specific domain, are exhaustively
large. For example, the Chemical Entities of Bio-
logical Interest (ChEBI) ontology [3] contains more
than 50,000 and SNOMED CT more than 300,000
entities. To support the biomedical community in
finding and using ontologies, the National Center
for Biomedical Ontology (NCBO) has developed
BioPortal [4],1 an open online repository of biomed-
ical ontologies and terminologies. BioPortal cur-
rently hosts more than 500 biomedical ontologies.
Users access BioPortal frequently in their work. In

1http://bioportal.bioontology.org

the first half of 2016, more than 215,000 unique IP
addresses accessed the BioPortal website and sub-
mitted more than 2.52 million requests for various
ontologies and services [5].

BioPortal provides two modalities through which
researchers can access the content of the ontolo-
gies: (1) an interactive website (referred to in the
rest of the paper as WebUI) that enables biomed-
ical researchers to explore ontologies using a class
hierarchy visualization (see Figure 1) [6]; and (2)
an application programming interface (API) that
allows researchers to programmatically query the
repository for specific ontologies and entities, which
allows them to perform tasks such as search, map-
ping and annotation [7]. Figure 2 shows an example
of a BioPortal API request.

In the remainder of the paper we will refer to
users exploring ontologies when users browse the
ontologies and their classes using the BioPortal
WebUI (Figure 1). We will refer to users query-
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ing ontologies when the users make the BioPortal
API requests (Figure 2), usually to retrieve content
for their application. Finally, reuse will refer to the
situation in which an ontology uses a class defined
in another ontology (see Section 3.3).
Problem. Despite the success and widespread
adoption of BioPortal for biomedical and Semantic
Web research during the last 10 years, we do not
have a clear understanding of how researchers use
BioPortal to explore, query and use ontologies in
their own projects. Remedying this missed oppor-
tunity by investigating empirical usage data from
BioPortal will allow BioPortal developers to better
target their efforts to meet the needs of biomed-
ical researchers. Through such an investigation,
biomedical researchers can identify frequently used
classes in their ontologies, while ontology engineers
could concentrate their efforts on improving the
content of highly accessed classes in their ontolo-
gies. We strongly believe that insights gained by
such an investigation can guide the development of
new interactive visualization methods and efficient
semantic resource search and exploration methods.
It will also enable the development of methods to
profile users based on their behavioral characteris-
tics and provide targeted recommendations.
We attempt to answer the following research

questions in our work:

1. RQ1: Do BioPortal WebUI exploration
and API querying inform reuse? Are the
classes that users explore and access more often
through the WebUI and API also reused more
often in other ontologies?

2. RQ2: Do BioPortal WebUI exploration
and API querying correlate? Do users ex-
plore the same classes in the BioPortal WebUI
that they query through the API?

3. RQ3: Do BioPortal WebUI exploration
and API querying inform usage? Are the
classes that users explore and access more often
through the WebUI and API also used more in
downstream applications?

The research questions were formulated, in part,
due to our prior research, categorizing exploration
behaviors from BioPortal WebUI logs and analyzing
ontology reuse across biomedical ontologies [5, 8].
Approach. In this paper, we present an empiri-
cal investigation to help improve our understand-
ing of how researchers i) explore, ii) query, and iii)

Figure 1: The Oncogene subtree of the National Cancer
Institute Thesaurus (NCIt) displayed in class hierarchy of
the BioPortal WebUI. The “Jump To” field allows users to
quickly select a class in the hierarchy.

http://data.bioontology.org/search?q=Oncogene
&ontologies=NCIT

Figure 2: An example BioPortal API request to retrieve all
classes called “Oncogene” from the NCI Thesaurus.

reuse biomedical ontologies and terminologies from
BioPortal [5, 8, 9]. We hypothesize that users of
BioPortal mainly use the WebUI to explore classes
of ontologies to determine their utility for a spe-
cific task before programmatically querying (API)
and using these classes for ontology reuse or down-
stream applications. For example, a user might
first explore the Oncogene class of the NCI The-
saurus [10] in the BioPortal WebUI (Figure 1),
and then, if she deemed it appropriate for her
application, she would access the Oncogene class
through the BioPortal API. Specifically, we ap-
ply several visualization techniques to analyze com-
monalities and differences among information con-
sumption strategies across different interfaces (i.e.,
WebUI and API) and purposes (i.e., exploration,
querying, reuse and downstream applications).

For each ontology, we analyze correlation statis-
tics betweenWebUI exploration data, API querying
data and reuse data. To inspect and compare large
amounts of exploration, query and reuse data, we
make use of and extend PolygOnto [8], a visualiza-
tion method in which an ontology is represented as
an abstract geometrical polygon. The PolygOnto
visualization method enables a quick comparison
of individual usage and information consumption
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strategies across different interfaces and ontolo-
gies. Through three scenarios, we further analyze
whether user interactions in BioPortal inform real-
world applications of ontologies.
We discuss some of the key findings of our em-

pirical analysis with respect to ontology users’ ex-
ploration and querying behavior, and highlight op-
portunities for further investigations. All results
presented in this paper, including PolygOnto and
other visualizations we have developed for each on-
tology, are available online at:
http://onto-apps.stanford.edu/vision.

The datasets used in this study have also been
published as TSV and RDF files at:
http://onto-apps.stanford.edu/bionic under
the Creative Commons CC-BY-NC-SA license [11].
The remainder of this paper is organized as fol-

lows: Section 2 describes work related to the analy-
sis of user logs in the context of the Semantic Web,
and to ontology visualization. In Section 3, we char-
acterize the datasets used in the different analyses.
In Section 4 we outline the methods used to com-
pute and visualize correlation statistics, and delve
deeper into the PolygOnto visualization method.
We present the results of our empirical investiga-
tion in Section 5. Finally, in Section 6, we discuss
few key findings regarding the ways in which users
explore and query biomedical ontologies.

2. Related Work

2.1. Log Analysis to Characterize User Behavior
Several studies have tried to identify ways in

which users interact with ontologies and ontology
editors in the context of collaborative ontology de-
velopment. These studies have used the data pro-
vided by logs of user activity in collaborative on-
tology development tools. Strohmaier et al. [12]
conducted an empirical investigation using user ac-
tivity logs to measure the impact of collaboration
on ontology-engineering projects. The authors de-
veloped several new metrics to quantify different as-
pects of the hidden social dynamics that take place
in these collaborative ontology-engineering projects
from the biomedical domain. Falconer et al. [13] in-
vestigated and classified users according to different
roles in collaborative projects by clustering users
according to the types of changes they contributed.
Debruyne et al. [14] used different characteristics

(reputation sensors) to measure the reputation of
users in collaborative ontology-engineering projects

with the goal of identifying “leaders” that drive ac-
tivity, quality or social interactions. Using a com-
bination of k-means and the GOSPL methodology
[14], Van Laere et al. [15, 16] classified users by
clustering interactions that users engage in while
engineering an ontology. Vigo et al. [17] analyzed
eye-tracking data and event logs from the Protégé
ontology editor to identify common user activity
patterns, and proposed guidelines for bulk editing
and modifications to the Protégé user interface.

In 2013, Wang et al. [18] applied association-rule
mining to the change-logs of several different col-
laborative ontology-engineering projects to extract
edit patterns, which were then used to predict the
next change actions in the corresponding projects.
Similarly, Walk et al. [19, 20, 21] used (higher-
order) Markov chains to study user-editing trails of
ontology-engineering projects to predict the action
a user is most likely to conduct next. Pesquita et al.
[22] leveraged the location and specific structural
features of edit trails to show that these features
can be used to determine where the next change is
going to take place in the Gene Ontology.

Recently, Walk et al. [5] conducted a first empir-
ical study to cluster and analyze how users browse
ontologies in NCBO’s BioPortal [4]. They discov-
ered a total of 7 different exploration strategies and
showcased how certain attributes of an ontology can
influence user interactions.

Yet, we still do not fully understand how users
interact with ontologies across different modes of
access and purposes. Moreover, we lack tools that
allow ontology engineers, researchers and ontology
repository maintainers to visualize and investigate
these interactions between users and ontologies.

2.2. Ontology Visualization Methods
Over the years, researchers have proposed several

methods for visualizing ontologies. Some of these
methods are informed by the different requirements
of end users, and also by the size and the complex-
ity of the ontology [23]. Two groups of methods
are widespread for ontology visualization: Indented
Tree (e.g., as used in BioPortal, or the Protégé on-
tology editor [24]) and Graph-based methods (e.g.,
as used in VOWL [25]). Indented tree visualizations
are more organized and familiar to novice users.
At the same time, graph-based visualizations are
more intuitive without visual redundancy, partic-
ularly for ontologies with multiple inheritance [6].
Kamdar et al. [26] have used graph-based visual-
izations of domain-specific ontologies to help do-
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Figure 3: We visualize the January 2015 version of ChEBI ontology using 3 methods. a) Graph-based visualization,
where nodes represent classes and edges represent subClassOf relations. The nodes are colored based on the number of ontologies
reusing the underlying class. b) Indented Tree visualization. c) Implicit Hierarchy visualization, where classes are arranged
horizontally based on maximum path distance from the root class and vertically based on proximity to the parent classes in
the previous layer. d) Histogram representing the distribution of total number of parent classes for each class in ChEBI.

main experts formulate queries, especially for cases
in which the experts were not familiar with the com-
plex syntax and semantics of query languages.
Baehrecke et al. [27] have also experimented with

other methods, such as 3D visualizations (e.g., On-
tosphere [28]) and implicit hierarchy visualizations
[29] (e.g., TreeMaps [30]) to visualize large ontolo-
gies. Implicit hierarchy visualizations do not use
traditional ‘node-link’-based approaches to repre-
sent hierarchy. They also rely on other attributes
such as node sizes and positions. However, these
methods may not be very efficient to provide a holis-
tic view of an ontology, to visualize ontologies with
multiple inheritance, or to visualize count statistics
(e.g., number of ontologies reusing a class).
To demonstrate the different types of visualiza-

tion techniques and discuss some of their limita-
tions, we applied three different visualization meth-
ods to the ChEBI ontology (January 2015 version):
Graph (Figure 3a), Indented Tree (Figure 3b), and
Implicit Hierarchy (Figure 3c). We color-code the
class nodes with respect to the number of times a
class is reused in other ontologies using the same
Internationalized Resource Identifier (IRI) [8]. The
color scale is indicated in Figure 3a. As the under-
lying ontology had 54,847 classes, the Graph and
Indented Tree visualizations become hard for users
to explore without additional tools (such as zoom

and drag) and impose a higher cognitive load on
the users. The Implicit Hierarchy visualization or-
ganizes classes horizontally in different layers based
on the maximum path distance from the root class
by traversing the subClassOf links, and vertically
such that classes in a lower layer are placed close to
the position of their parents in the previous layer.
However, as Figure 3d shows, ChEBI and other
biomedical ontologies may have classes with sev-
eral parents. Moreover, such plots can only show
count statistics and not patterns (such as a group
of classes reused together).

The Implicit Hierarchy visualization method can
display the hierarchical structure of the ontology.
The shape of the visualization bears resemblance
to Violin plots [31] or Bean plots [32]. Such plots
can effectively visualize the density distributions of
data along with summary statistics and individual
data points. They can aid in revealing the structure
of the dataset, discovering anomalies in a dataset
(e.g., bimodal distributions) and in the comparison
of different datasets. Instead of visualizing each
class in an ontology and its corresponding count in
the dataset, as in the current Implicit Hierarchy vi-
sualization methods, a higher frame of abstraction
may be useful to discover patterns in our data.

Recently, pictograph visualizations of large
datasets have been demonstrated to make it eas-
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ier for the user to remember the data and to im-
prove discovery of relevant information, compared
with minimalist charts [33]. The Electronic Fluo-
rescent Pictograph visualization method [34] paints
gene expression data from large-scale microarray
datasets onto pictographic representations of the
experimental samples used to generate the datasets.
The PolygOnto visualization method [8], which

we extended and used for this study, is inspired by
the Implicit Hierarchy and pictograph visualization
methods. In essence, the PolygOnto method gener-
ates a pictorial representation of the ontology that
can be used both to compare hierarchical structures
of ontologies as well as to efficiently visualize explo-
ration and query patterns for several users across
large ontologies. In a previous study [8], we used
a version of this method to visualize reuse patterns
extracted from BioPortal Import Plugin logs [7].

3. Datasets

For this study, we use four different sources of
data: i) a dump of BioPortal ontologies, ii) the
reuse statistics generated by Kamdar et al. [9, 8],
iii) the WebUI and API requests, which are logged
when users explore and query BioPortal, and, iv)
ontology-based data annotations in the NHGRI
GWAS Catalog [35] and the Life Sciences Linked
Open Data cloud [36, 26].

3.1. Ontology Datasets
We obtained a triplestore dump of the BioPortal

ontologies in N-triples format that contained 509
distinct ontologies as of January 1, 2015. We ex-
tracted statistics for WebUI clicks and API query
data from the BioPortal access logs for the period
January 2013–June 2016.
For each class in each ontology, we assigned an

attribute maximum depth as the maximum path
distance from the given class to the root class
(owl:Thing in OWL ontologies) by traversing the
subClassOf links. For example, the maximum
depth for classes in the example ontology depicted
in Figure 4a is 5.
We removed ontological views (i.e., O1 ⊆ O2), as

well as ontologies whose classes are never reused by
other ontologies, and ontologies that do not reuse
classes from other ontologies (cf. Section 3.3). We
also exclude those ontologies that had less than 10
unique users that explored or queried them using
the BioPortal WebUI and API respectively. After

Table 1: Characteristics of the BioPortal access logs.
Feature WebUI API

Unfiltered Requests (ca.) 18.9M 346.2M
Class Requests (ca.) 5.4M 67.2M
Unique IPs 1, 030, 746 205, 809

Observation periods (ca.) 3.5 years 3.5 years

applying these filtering conditions, we were left with
115 distinct biomedical ontologies: 48 OWL ontolo-
gies, 8 OBO Foundry [37] member ontologies (e.g.,
GO, CHEBI), 38 OBO Foundry candidate ontolo-
gies (e.g., OGMS, HP) and 21 UMLS [36] Termi-
nologies (e.g., SNOMED CT, ICD-9).

3.2. WebUI Exploration & API Query Logs
For the analyses presented in this paper, we col-

lected a total of 18.9M WebUI requests and 346.2M
API queries from the BioPortal Apache access logs
between January 2013 and June 2016 (Table 1).
From each request, we used the information about
when it was received by the server (timestamp),
who submitted the request (IP address), and which
resource was requested (the URL). Similarly to
Walk et al. [5], we filter and blacklist IPs that
belong to search-engine bots, crawlers and spiders
(e.g., GoogleBot or Yahoo! Slurp) and remove all
requests that do not contain a valid ontology ab-
breviation and class ID. This reduces the dataset
to 5.4M WebUI requests and 67.2M API queries.
For our analyses, we define a user to be a unique,

distinct IP address, that sends a request using ei-
ther the BioPortal WebUI or the BioPortal API.
Note that this assumption has a fallacy, as different
users may share a common IP address or the same
user may be assigned multiple IP addresses over
consecutive visits of BioPortal. As we are mainly
interested in the comparison of usages and interac-
tions through the different modes (i.e., WebUI and
API), the impact of this limitation is negligible.

3.3. Reuse Logs
Previously, Kamdar et al. computed reuse statis-

tics across all biomedical ontologies in BioPortal
[8, 9]. In this research, we use two different reuse
constructs that are commonly found across biomed-
ical ontologies: i) IRI - two classes share the same
Internationalized Resource Identifier, and ii) CUI -
two classes are mapped to the same UMLS Concept
Unique Identifier. The reuse measures were com-
puted for each class in every ontology in BioPortal.
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From the previously computed reuse measures, we
used the following in our analyses:

1. The number of ontologies reusing a class via
the same IRI.

2. The number of ontologies reusing a class with
the same CUI mapping.

3. The sets of classes from one ontology reused in
other ontologies using the same IRI.

4. The sets of classes from one ontology whose
CUI are mapped to classes in other ontologies.

3.4. Ontology-Annotated Datasets
For research question RQ3: Do BioPortal

WebUI exploration and API querying inform
usage?, we present real-world research scenarios in
the biomedical domain that use biomedical ontolo-
gies to annotate datasets for knowledge manage-
ment, data integration and search. We use our anal-
yses and visualization methods (Section 4.1 & 4.3)
to compare and correlate the use of the Experimen-
tal Factor Ontology (EFO) and the Chemical En-
tities of Biological Interest (ChEBI) ontology with
the BioPortal WebUI exploration and API querying
user behavior.

3.4.1. Catalog of Genome-wide Association Studies
The NHGRI GWAS Catalog is a quality con-

trolled, manually curated, literature-derived col-
lection of all published genome-wide association
studies (GWAS). The studies and the associated
traits are annotated with Experimental Factor On-
tology (EFO) classes (e.g., lung adenocarcinoma –
EFO:0000571) for enhanced search and interoper-
ability. We downloaded the entire NHGRI GWAS
Catalog and grouped EFO classes used to anno-
tate the studies. For this research, our dataset in-
cludes 3,417 GWAS entries with 4,542 annotations
and 1,375 distinct EFO classes.

3.4.2. Life Sciences Linked Open Data Cloud
Using Semantic Web technologies and linked data

principles, biomedical researchers have published
biomedical data sources as RDF graphs to cre-
ate the Life Sciences Linked Open Data (LSLOD)
cloud [36, 26]. For this research, we have iden-
tified 12 different LSLOD sources, such as Pub-
Chem [38], DrugBank [39], and PharmGKB [40],
that have been used for various biomedical re-
search tasks. For knowledge management and

data integration, these sources annotate or cross-
reference their schema elements and individual in-
stances with classes from the Chemical Entities of
Biological Interest (ChEBI) ontology. We retrieved
and normalized 134,063 ChEBI-based annotations
from these 12 sources using a distributed querying
framework over the LSLOD cloud [41].

3.4.3. PubChem Database of Biological Assays
The PubChem database uses classes from the

ChEBI ontology to annotate compounds that are
used in biological assays [38]. We query the Pub-
Chem database to retrieve count data on the num-
ber of assays that use a particular compound. We
retrieved 1,387,027 PubChem experiments (unique
assay–compound pairs) with 44,305 unique ChEBI-
annotated compounds.

4. Methods

4.1. Computing Exploration, Query and Reuse
Statistics

We generated a graph structure for each ontology
using the subClassOf relations and traversed this
graph to determine the longest paths for each class
from the root (generally, owl:Thing) in order to
determine their maximum depth attribute.

For every class in the 115 ontologies in our
dataset (Section 3.1), we extracted the following 4
attributes from the reuse, WebUI and API request
logs: i) IRI reuse, ii) CUI reuse, iii) Unique IP
requests using WebUI and iv) Unique IP requests
using API. Note that OWL and OBO Foundry on-
tologies contain only IRI reuse, whereas UMLS ter-
minologies contain only CUI reuse [8]. Therefore,
we computed a single attribute reuse that reflects
the IRI reuse in OBO and OWL ontologies, and
CUI reuse for UMLS ontologies.

For each ontology, we computed three propor-
tions of classes: (1) the proportion of classes ac-
cessed using the WebUI; (2) the proportion of
classes accessed via the API; and (3) the propor-
tion of classes that were reused in other ontologies.
To calculate the proportions, we used the following
generic formula:

ProportionC(O) =
∑N

t=1 1[C(t) ≥ 1]
N

(1)
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In Equation (1), N indicates the total number of
classes in ontology O. C indicates the count statis-
tic used (i.e., C(t) indicates the number of times a
class t is either accessed or reused).

To evaluate our hypothesis that biomedical on-
tology developers tend to reuse the same classes
that biomedical researchers explore via the WebUI
and query via the API, we compute three pairs of
Spearman correlation and Jaccard similarity statis-
tics across all ontologies using the following com-
parisons: i) Reuse versus WebUI Access, ii) Reuse
versus API Access, and iii) WebUI Access versus
API Access. The first two comparisons indicate
whether the classes reused in other ontologies are
similar and correlate with the way users explore and
query ontologies. The third comparison provides
initial insights into the differences between infor-
mation consumption strategies using the BioPortal
WebUI and the API.

SA = {t|CA(t) ≥ 1} ; SB = {t|CB(t) ≥ 1} (2)

JaccardAB(O) = |SA ∩ SB |
|SA ∪ SB |

(3)

The Jaccard similarity statistic for a particular
comparison between any two attributes A and B
(i.e. Reuse, WebUI Access or API Access; Equa-
tion (2)) can be computed using Equation (3). For
the attributes being compared, we determine two
sets of classes SA and SB , such that the count
statistic for each class for the corresponding at-
tribute (e.g. CA(t)) must be greater than or equal
to 1. The exact count data is not used here (e.g.
the number of requests for a particular class).

SpearmanAB(O) = cov(rCA, rCB)
σrCA

σrCB

(4)

For computing the Spearman correlation statis-
tic between any two attributes A and B, we use
the count data to generate ordered rankings of the
classes for each attribute (e.g. rCA). The Spear-
man correlation statistic is calculated using Equa-
tion (4), where cov(rCA, rCB) denotes covariance
of the ordered rankings, and σrCA

denotes standard
deviation. Spearman correlation helps to minimize
the impact of extreme outliers through rankings.

4.2. Comparing Ontology Usage in Annotations
We use the ontology-annotated datasets (Section

3.4) to generate additional real-world application
attributes for ChEBI and EFO.

For each class in the ChEBI ontology, we have the
following usage attributes from the LSLOD sources:
i) number of sources that use the class for anno-
tation or cross-reference, and ii) number of Pub-
Chem assays that experiment with a given com-
pound cross-referenced to the class. Similarly, for
each class in the EFO ontology, we have the num-
ber of studies in the NHGRI GWAS Catalog that
are annotated with the class.

To determine if user behavior and ontology reuse
inform ontology usage in the downstream applica-
tions, we compute the Spearman correlation and
Jaccard similarity statistics between the real-world
usage attributes, and the access and reuse at-
tributes (Section 4.1). However, not all classes in
a given ontology may be relevant for the goals of
the downstream application (e.g. EFO ontology
includes anatomy classes that are not relevant in
GWAS studies). Hence, we also compute an “Ad-
justed Spearman Correlation” statistic that limits
the set of attribute classes in the analysis to only
those present in our annotated datasets.

4.3. Visualizing Ontologies using PolygOnto
In this paper we make use of and extend the

PolygOnto visualization technique—which we ini-
tially developed to study reuse in biomedical on-
tologies [8]—to visually inspect exploration, query,
reuse and usage data of biomedical ontologies on
BioPortal. In PolygOnto, an ontology is repre-
sented as an abstract geometrical polygon that dis-
plays count-based attributes of the classes while at
the same time retaining the hierarchical structure
of the ontology. For example, a PolygOnto visu-
alization for reuse would use the reuse count for a
class, and show the class in the context of the class
hierarchy. Figure 7 shows several examples of the
PolygOnto visualization.

The main idea behind PolygOnto is that rather
than individually representing each class in the on-
tology and its corresponding count-based attributes
(cf. Section 4.1), we perform an abstraction based
on the maximum depth attribute of the classes.
Specifically, we aggregate different classes that are
at the same maximum depth from the root class
in the ontology. We then symmetrically align each
depth layer. The breadth of each layer is propor-
tional to the number of classes in the layer.
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Figure 4: Converting the ontological hierarchy to a PolygOnto visualization. a) The directed acyclic graph structure
of an example ontology is shown in the first figure, using a node-link diagram, where the nodes represent the classes in the
ontology and the connecting links represent the subClassOf relations between the classes. b) The directed acyclic graph is
converted to an abstract glyph by considering the maximum depth of any class from the root class (e.g., owl:Thing). Different
classes are aggregated based on this maximum depth (e.g., 4 classes at depth 2) and are aligned symmetrically at each depth
layer, where the breadth is proportional to the number of classes in the layer. c) Finally, user behaviors are also converted to
such glyphs and overlaid upon the ontology glyph, to generate a PolygOnto. In this figure, 3 users (characterized by different
color nodes) explore different classes of the ontology to generate the colored pictographs in b). Generally, triangles indicate
“parent–children” substructure and inverted triangles indicate “child–parents” substructure, with some exceptions.

Figure 4 shows the process of converting an on-
tology to a PolygOnto visualization. We convert
the directed acyclic graph structure of an ontology
to a polygonal glyph (i.e., a geometric structure),
as shown in Figure 4 (a,b). Hence, the height of the
glyph indicates the number of hierarchical layers in
the ontology and the width of the glyph indicates
the breadth of the ontology at each hierarchical
layer. The edge, which connects two adjacent ver-
tices in the polygonal glyph, indicates the increase
or decrease of class count between layers. Classes
in subsequent layers always have parent–child (or
subClassOf ) relations. For better proportionality,
we consider the breadth of the layer to be log-scaled
in the number of classes at that layer.

Breadthi =
{

2 ∗ γ ∗ loge( ni−1
2 + e) if (ni > 1)

0 if (ni = 1)
(5)

For ni classes in the ith layer of the polygon, the
breadth is calculated as shown in Equation (5). For
visual simplicity, layers with single classes culmi-
nate as a point (i.e., breadth = 0). γ relates to
the minimum breadth of the polygon at each layer.
That is, a hierarchical layer with 2 classes has a

breadth of 2.35 ∗ γ.
We use PolygOnto to visualize user exploration,

querying or reuse patterns over the polygonal glyph
of the ontology. Figure 4c depicts how we convert
a user exploration pattern to a PolygOnto visual-
ization. Suppose three different users explore three
different sets of classes in an ontology. The nodes
explored by a user are shown in the same color.
The exploration paths are converted to polygonal
glyphs using a similar method as described before.
For example, the exploration behavior of the purple
user includes a class (depth 3) and its two parent
classes (depth 2), and is represented as an inverted
triangle glyph at depth 2 (as the parent classes have
a maximum depth of 2). Similarly, the exploration
behavior of the green user includes the root class
and its two child classes and is represented as a
green triangle glyph at depth 0.
While it may seem intuitive that triangles rep-

resent some form of parent–child structure, it is
worth noting that this may not be true for all cases
(e.g., blue user). Straight lines along the vertical
axis may represent a single parent–child pair. Note
that we only consider classes explored together (co-
occurrence) by the same IP address and neglect
temporal and sequential information. Each glyph
in PolygOnto has an opacity value smaller than 1,
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so that the underlying glyphs in the visualization
can be seen. Hence, an opaque glyph at a partic-
ular layer indicates that the corresponding pattern
(but not necessarily the same group of classes) was
observed several times. The processing and visual-
ization of other count-based attributes for classes,
for example the number of queries via the API or
how often a class was reused, follows analogously.
In Equation (5), we chose the natural logarithm

over a base 10 logarithm because coefficients on the
natural-log scale are directly interpretable as ap-
proximate proportional differences [42]. That is,
minute differences in the breadth of the overlying
pattern glyphs will be visible in PolygOnto visual-
ization. We sum the Euler’s constant e, to ensure
that the breadth of the layer is a positive number.
The parameter γ can be adjusted by the user—
an optimal value will allow the overlying pattern
glyphs (with different class counts in a layer) to be
visually discernible, while not being broad.

5. Results

We demonstrate some of the key findings from
our empirical analysis of the exploring, query, usage
and reuse behavior of users by visually inspecting
large interaction log data.

5.1. Exploration & Query Statistics across biomed-
ical Ontologies

For each class in an ontology, we determined the
unique number of IP requests made either using the
BioPortal WebUI or API during the period of 2013–
2016, and computed the proportion of classes that
were accessed at least once during this time period
(see Section 4.1).
The main scatter plot in Figure 5a visual-

izes the proportion of classes accessed using the
BioPortal WebUI (ProportionUI(O)) versus the
proportion of classes accessed using the BioPortal
API (ProportionAP I(O)). Each ontology is visu-
alized as a node in the scatter plot. The shape of
each node depends on the type of ontology—OBO
(square), UMLS (circle) and OWL (diamond). The
size of the each node is proportional to the number
of classes in ontology. The Spearman Correlation
statistic for the WebUI Access versus API Access
comparison is mapped to a yellow–blue color scale.
The horizontal scatter plot in Figure 5b aligns

with Figure 5a along the ProportionUI(O) x-axis,
visualizing the number of unique users that access a

given ontology through the BioPortal WebUI. Sim-
ilarly, the vertical scatter plot in Figure 5c aligns
with Figure 5a along the ProportionAP I(O) y-axis,
depicting the number of unique users that access a
given ontology through the BioPortal API.

The scatter plots show that users tend to ex-
plore a larger proportion of any given biomedi-
cal ontology using the BioPortal WebUI than they
query through the BioPortal API. However, certain
UMLS terminologies, such as SNOMED CT, NCIt
(National Cancer Institute Thesaurus), ICD10 (In-
ternational Classification of Diseases), MEDDRA
(Medical Dictionary for Regulatory Activities) and
MEDLINE PLUS stand out as outliers. Almost
all classes in these terminologies are accessed us-
ing the API, but only a very small number of
classes in these terminologies are accessed using the
BioPortal WebUI, even though more than 1, 000
unique users have explored these terminologies us-
ing the WebUI during the investigated time period.
These terminologies are popular, and are used for
several biomedical purposes, such as cancer knowl-
edge management, medical records annotation and
drug–adverse reaction association discovery [41].
Automated methods, developed by biomedical in-
formatics researchers, query the BioPortal API ex-
haustively for these purposes. However, the size
of these ontologies (10,000–400,000 classes) might
make exploration using the WebUI’s indented tree
visualization difficult.

On the other hand, much smaller subsets of the
popular OBO Foundry ontologies, such as the Gene
Ontology (GO) and ChEBI, were accessed through
the API (≈ 10%). Unlike GO, however, a large
proportion of the ChEBI ontology was accessed us-
ing the WebUI. Approximately 1, 000 users have
accessed these ontologies through BioPortal during
the time period between January 2013 and June
2016. Note that several ontology exploration and
browsing tools exist for GO and ChEBI, which may
serve as alternatives to BioPortal.

Using the yellow–blue color scale of the ontol-
ogy nodes, we observe that most of these ontologies
have a very small Spearman Correlation statistic for
WebUI Access versus API Access (< 0.5). That is,
the set of classes that are accessed using the WebUI
may be drastically different from the set of classes
that are accessed using the API resource. This find-
ing likely reflects the different goals of users who ex-
plore an ontology compared with those who query
the ontology using the BioPortal API.
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Figure 5: Visualizing ontology access statistics. a) The main scatter plot indicates the proportion of the ontology that is
accessed using the BioPortal WebUI versus the proportion of ontology that is accessed using the BioPortal API. Each scatter
point is an ontology. The size of the point is proportional to the total number of classes in the ontology. The Spearman
correlation for the ontology’s WebUI Access versus API Access comparison is mapped to a yellow–blue color scale (d) and
used to color the corresponding scatter point. The shape of the ontology depends on whether the ontology is listed under OBO
Foundry (square), UMLS (circle) or OWL (diamond). b) The horizontal scatter plot indicates the total number of unique
IP requests made using the WebUI between 2013–2016. c) The vertical scatter plot indicates the total number of unique IP
requests made using the API between 2013–2016. Our selected ontologies are highlighted using red-boxed labels.

5.2. Similarity & Overlap of Exploration, Query
and Reuse Data across Ontologies

To better understand the findings of Section 5.1,
we investigate the distribution of Spearman Cor-
relation and Jaccard Similarity statistics (Figure 6)
across the three different comparisons: i) Reuse ver-
sus API Access, ii) Reuse versus WebUI Access, iii)
WebUI Access versus API Access.
We compute adjusted p-values by differentiating

the distributions of these statistics for the different
comparisons. To deal with the multiple compar-

isons problem, we use ANOVA (analysis of vari-
ance) summaries and Tukey HSD (Honest Signif-
icant Differences) post-hoc tests over those sum-
maries to compute these adjusted p-values. The
differences in the distributions, as well as adjusted
p-values are presented in Table 2.

The Spearman Correlation statistics (Figure 6a)
for the WebUI Access versus API Access compar-
ison are significantly higher than they are for the
Reuse versus WebUI Access and Reuse versus API
Access. The Spearman correlation statistics for the
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Figure 6: Distributions of statistics across ontologies. a) Spearman Correlation and b) Jaccard Similarity. These
distributions are computed for the three main comparisons: 1) Reuse versus API Access, 2) Reuse versus WebUI Access,
and 3) WebUI Access versus API Access. These distributions are grouped according to the ontology type—OBO Foundry
(green box plot), UMLS (orange box plot) or OWL (purple box plot). The statistics for the ‘WebUI Access versus API Access’
comparison are generally higher than other comparisons.

Statistic type Distribution pair Mean difference Adjusted p-value

Spearman Correlation
Reuse vs WebUI – Reuse vs API 0.01418511 0.4199016
WebUI vs API – Reuse vs API 0.26334301 0.0000000
WebUI vs API – Reuse vs WebUI 0.24915790 0.0000000

Jaccard Similarity
Reuse vs WebUI – Reuse vs API 0.01094695 0.8008144
WebUI vs API – Reuse vs API 0.20231318 0.0000000
WebUI vs API – Reuse vs WebUI 0.19136624 0.0000000

Table 2: Significance of differences between the distributions of statistics for different comparisons.

first two comparisons (Reuse versus API Access,
and Reuse versus WebUI Access) are generally <
0.1 for most ontologies. This finding indicates that
users on BioPortal are less likely to explore or query
those classes in a given ontology that are reused
by other ontologies. This finding disproves our
first research hypothesis which expected that reused
classes are also frequently explored and queried.
Hence, the number of times a particular class is
reused may not be a good indicator of popularity,
in terms of exploration and programmatic query ac-
cess, for most users on BioPortal. Note that the
Spearman Correlation statistic for the Reuse versus
WebUI Access comparison in UMLS terminologies
(mean diff. = 0.11, p = 10−5) and OBO Foundry
ontologies (mean diff. = 0.07, p = 2.1 × 10−4) is
significantly higher than in other OWL ontologies.
Moreover, the Jaccard Similarity statistics (Fig-

ure 6b) for the Reuse versus WebUI Access and
the Reuse versus API Access are also very small

(≈ 0.25 for UMLS terminologies and ≈ 0.1 for OBO
Foundry and other ontologies). Similar to Spear-
man correlation statistics, the Jaccard Similarity
statistics for the WebUI Access versus API Access
comparison are significantly higher than the statis-
tics for the Reuse versus API Access and the Reuse
versus WebUI Access comparisons. This result fur-
ther strengthens the rejection of our first research
hypothesis. UMLS terminologies exhibit larger cor-
relation and similarity statistics than other ontolo-
gies, as we have considered reuse to occur through
Concept Unique Identifier (CUI) mappings between
similar classes, generated and updated a posteriori
after the terminologies have been created [8].

However, in general, it should be noted that the
Spearman Correlation and the Jaccard Similarity
statistics for the WebUI Access versus API Access
comparison are still very small. This result dis-
proves our second hypothesis, stating that users ex-
plore and programmatically query the same classes.
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Hence, we may expect that the classes explored us-
ing the BioPortal WebUI are less likely to also be
queried using the BioPortal API, and vice versa.

5.3. Providing a Visual Perspective on Exploration,
Query and Reuse Statistics

To learn more about how users access ontolo-
gies using the BioPortal WebUI and API, as well
as how they reuse classes from these ontologies, we
visualize large amounts of interaction data using
PolygOnto. We use as examples four prominent
ontologies from the biomedical domain: i) System-
atized Nomenclature of Medicine – Clinical Terms
(SNOMED CT), ii) Chemical Entities of Biological
Interest Ontology (ChEBI), iii) Current Procedu-
ral Terminology (CPT), and iv) Experimental Fac-
tor Ontology (EFO). These ontologies have between
10,000 and 350,000 classes. More than 1,000 users
accessed these ontologies between 2013–2016 using
both the BioPortal WebUI and the BioPortal API.
The classes of these ontologies are also frequently
reused in other ontologies. CPT and EFO have a
high Spearman Correlation statistic for the WebUI
versus API comparison. The statistics for these
ontologies are listed in Table 3.
Figure 7 shows three PolygOnto visualizations

that we generated for each of the four ontologies.
The three visualizations correspond to the WebUI
Access, API Access, and Reuse. We also overlay
orange circular nodes over each PolygOnto visual-
ization to depict the total number of users who only
explore or query a single class in the ontology at a
given maximum depth. In each PolygOnto visual-
ization, the underlying red polygon depicts the hi-
erarchical structure of the visualized ontology. The
height of the polygon indicates the maximum depth
of the ontological hierarchy (number of layers) and
the width of each layer indicates the total num-
ber of classes at a given depth from the root class
in the ontology. In addition, in the WebUI Access
and API Access PolygOnto visualizations, each user
interaction pattern is displayed as a distinct blue
polygon (Section 4.3) based on the hierarchical lo-
cation of the classes accessed by the user. In the
Reuse PolygOnto visualization, each distinct blue
polygon represents an ontology that reuses a set of
classes from the visualized ontology. The area of
each blue polygon is representative of the number
of ontology classes accessed by a particular user or
reused by another ontology.
SNOMED CT and CHEBI have more than 20

hierarchical layers, and ≈ 300, 000 and ≈ 54, 000

classes, respectively. The number of classes at each
layer in the ontological hierarchy may vary drasti-
cally, giving a unique shape to each ontology.

5.3.1. Differentiating User Behaviors on the
BioPortal WebUI and the BioPortal API

SNOMED CT stands out as an outlier in Figure
5a in that the proportion (%) of classes queried us-
ing the API is almost 100. This observation is also
clearly visible in the PolygOnto visualization for
SNOMED CT API Access Figure 7a, where some
users have queried every class in the 2015 version
of the SNOMED CT terminology. The ChEBI on-
tology stands out in Figure 5b as it has a higher
proportion of classes that are accessed using the
BioPortal WebUI compared to the BioPortal API.

In general, BioPortal users are more likely to ex-
plore single classes of interest using the BioPortal
WebUI than they are to query a single class using
the BioPortal API, which is evident by the larger
orange circular nodes in the WebUI PolygOnto vi-
sualizations of Figure 7 (highlighted with orange
arrows). As the BioPortal API provides program-
matic and unrestricted access to an ontology, we as-
sume that users are likely to access larger portions
of a given ontology than they are in the WebUI. For
example, users who explore or query more than one
class in SNOMED CT on BioPortal exhibit a higher
tendency to use the BioPortal API (mean ≈ 34)
than the WebUI (mean ≈ 8). These findings
are also statistically significant (t = 2.31724, p =
0.0205). However, we do not observe this behav-
ior across all ontologies, as can be seen for ChEBI
and CPT ontologies in Figures 7b and 7c respec-
tively. In CPT, users are exploring more classes
using the BioPortal WebUI (mean ≈ 6) than the
API (mean ≈ 4) (t = −3.827743, p = 0.00013).
From the PolygOnto visualizations for ChEBI, we
observe users accessing a larger portion of the on-
tology using the WebUI (mean ≈ 53) than using
the API (mean ≈ 9). However, this finding is not
statistically significant. Hence, there may only be a
few users who explore larger sets of classes using the
WebUI. This can be verified using the PolygOnto
visualization, where we see four large and distinct
user polygons (highlighted with blue arrows).

We generated PolygOnto visualizations for all on-
tologies in our dataset. We found that users query
a larger portion of UMLS terminologies (MESH,
LOINC, MEDDRA) using the BioPortal API (av-
erage classes queried ≈ 6 − 300), whereas they ex-
plore more classes of smaller ontologies, or those
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Figure 7: PolygOnto visualizations. a) Systematized Nomenclature of Medicine – Clinical Terms (SNOMED CT), b)
Chemical Entities of Biological Interest (ChEBI), c) Current Procedural Terminology (CPT), and d) Experimental Factor
Ontology (EFO). For each ontology, we show 3 PolygOnto visualizations for WebUI Access, API Access and Reuse.
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Figure 8: Scatter plot visualization. The classes of the Experimental Factor Ontology (EFO) are depicted here as nodes
arranged according to the total number of unique users that explore or query the corresponding class using the BioPortal
WebUI or the BioPortal API resources. The size of each node is proportional to the number of times the class is reused in
other ontologies, and the color of each node is indicative of the maximum depth of the class in the ontology (Yellow–Blue
color scale). The position of the nodes is jittered to show underlying nodes (e.g., EFO classes unvisited using WebUI or API).

with fewer hierarchical layers (≈ 5 − 10 layers) in
the WebUI.

5.3.2. Lower Level Classes are Less Explored,
Queried & Reused

In Figure 7, we can clearly observe that users
rarely explore or query classes in the lower levels of
the ontologies (≈ 200–500 classes). We have made
the same observation for other ontologies with large
hierarchies in BioPortal, such as GO and NCIt.
CPT stands out as an exception (Figure 7c and
Figure 5b), as the proportion of the explored and
queried classes is ≈ 1. It should be noted, that not
all leaf classes in an ontology are displayed in the
lower levels of a PolygOnto visualization (Figure 4).
This observation can be verified if we generate a

scatter plot, such that all classes in the ontology
are aligned according to the number of times they
have been explored or queried using the BioPortal
WebUI and the API respectively (log-scale), and

are colored according to their maximum depth at-
tribute. As an example, we generate such a scatter
plot for the Experimental Factor Ontology (Fig-
ure 8). The positions of the nodes are jittered
randomly, so that classes having the same value
of unique WebUI and API users are spread across
a small region. Four distinct box-shaped regions
emerge in the scatter corresponding to the co-
ordinates (webui = 0, api = 0), (webui = 1, api =
0), (webui = 0, api = 1), (webui = 1, api = 1). We
can see that the color in these regions tends to be a
darker shade of blue, indicating that these regions
are composed of classes whose maximum depth at-
tribute is high.

5.3.3. Empirical Usage Patterns Extracted from
Exploration, Query & Reuse Data

In Figure 7, we observe triangular polygons along
the central axis of the ontology structure for both
the WebUI Access and the API Access across all
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Ontology Size PropUI PropAPI Spearman Jaccard Users Users
O N % % Correlation Similarity WebUI (#) API (#)
SNOMED CT 300,543 46.49 99.76 0.2475 0.4644 215,725 57,109
ChEBI 54,847 58.88 5.08 0.0658 0.0546 3,117 1,135
CPT 13,084 96.00 99.62 0.4412 0.9599 117,130 28,106
EFO 15,294 30.44 29.34 0.5458 0.4312 4,655 10,993

Table 3: Access Statistics for selected ontologies for which the PolygOnto visualizations are presented in this study.

ontologies. These observations indicate exploring
and querying patterns that are either i) Triangles:
1 parent→ 2 child classes, or ii) Inverted Triangles:
1 child → 2 parent classes.
We found that the median number of classes a

user explores using the WebUI is 3. This fact
is easily observed in the PolygOnto visualization,
i.e. the smallest triangle or inverted triangle in the
PolygOnto visualization indicates 3 classes. More
triangular polygons are observed for the WebUI
than API Access PolygOnto plots, especially in the
lower layers of the class hierarchies. This finding
indicates a direct effect of the indented tree vi-
sualization that is used in the BioPortal WebUI,
which facilitates the exploration of siblings as well
as children or parents in the hierarchy. Using the
BioPortal API, most users query the lower levels of
the hierarchy only when already requesting larger
parts of the ontology. This contrasts with our ini-
tial expectation that the BioPortal API would be
used mainly in downstream applications to query
specific classes in the lower levels of the hierarchy
(i.e., less abstract classes).

5.4. Comparing Usage in Real-World Applications

To investigate if and to what extent browsing,
query and reuse data from BioPortal informs real-
world usage of classes, we analyze the use of EFO
to annotate GWAS datasets (Section 5.4.1) and the
use of the ChEBI ontology for data integration in
the Life Sciences Linked Open Data Cloud and an-
notation of PubChem compounds (Section 5.4.2).

5.4.1. Usage of the Experimental Factor Ontology
We use the methods described in Section 4.1 to

compare and correlate user browsing and querying
behavior, as well as reuse, for the Experimental Fac-
tor Ontology (EFO) in BioPortal, with the usage of
EFO in the NHGRI GWAS Catalog. We also ap-
ply the PolygOnto visualization method (Section
4.3) over EFO and the NHGRI GWAS Catalog to

Figure 9: Visualizing the Experimental Factor Ontol-
ogy (EFO) and the EFO-annotated traits analyzed in
the genome-wide association studies (GWAS) from
the NHGRI GWAS Catalog. Each polygon here is an
unique study. The circles represent single class annotations.

determine the more useful portion of EFO for an-
notating GWAS studies, and also to determine the
depth of classes that are more commonly used for
annotation. Each study in the NHGRI GWAS Cat-
alog is similar to a unique user in these experiments.

Table 4 summarizes the Spearman correlation
and the Jaccard similarity statistics of the WebUI
Access, API Access and the Reuse data, with re-
spect to the EFO usage data. The Spearman cor-
relation values for all three comparisons (including
Reuse versus Usage) are in the range of 0.2 − 0.4
(similar to WebUI Access versus API Access Spear-
man correlation statistics presented in Section 5.2).
It should be noted that these statistics are observed
even though only ≈ 5% of EFO is used to anno-
tate the NHGRI GWAS Catalog studies. Due to
the low usage of EFO, the Jaccard similarity scores
are lower for these comparisons. After limiting our
analysis to only those EFO classes that are used for
annotations, we get adjusted Spearman correlation
statistics for WebUI Access versus Usage and API
Access versus Usage comparisons that are higher
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Ontology Dataset/ PropUsed Compared Jaccard Spearman Adjusted Sp.
O Scenario % Attribute Similarity Correlation Correlation

EFO GWAS Catalog 5.49
WebUI Access 0.1258 0.2076 0.2963
API Access 0.1715 0.3997 0.4945

Reuse 0.1668 0.3240 0.1529

ChEBI

LSLOD Cloud 84.06
WebUI Access 0.5408 0.0029 0.0354
API Access 0.0369 -0.0696 0.0326

Reuse 0.7461 -0.1159 0.1017

PubChem Assays 80.80
WebUI Access 0.5354 0.0407 0.0025
API Access 0.0310 -0.0978 0.0465

Reuse 0.3951 -0.0751 0.2148

Table 4: Statistics for selected ontologies and biomedical scenarios that use ontology-based annotations.

still — at ≈ 0.3 and ≈ 0.5 respectively.
In the PolygOnto visualization shown in Figure

9, studies that are annotated with 2 or more EFO
classes are represented using polygons, whereas
those studies that are annotated with a single EFO
class are summarized as the adjacent (orange) cir-
cles. We observe that no study has been annotated
with classes in the lower levels (≈ 1, 000 classes from
levels 12–16), or upper levels (that may originate
from the Basic Formal Ontology) of the EFO hier-
archy. This observation also reflects the results in
Section 5.3, where we found that the lower levels
of the ontological hierarchy in some of the highly-
accessed ontologies are rarely (if at all) explored by
users.
Based on the Spearman correlation statistics and

PolygOnto visualization, we assert that the EFO
classes used for annotations in the NHGRI GWAS
Catalog are also somewhat more frequently ex-
plored and queried by users through the BioPortal
WebUI and BioPortal API respectively, with very
similar grouped interaction patterns.

5.4.2. Usage of the Chemical Entities of Biological
Interest (ChEBI) Ontology

We analyzed the use of ChEBI ontology in two
real-world biomedical application scenarios.
Scenario 1. LSLOD cloud. The first scenario
involved the use of ChEBI to annotate or cross-
reference schema elements, as well as individual in-
stances, in 12 different RDF data sources in the Life
Sciences Linked Open Data (LSLOD) cloud. These
sources may use ChEBI-annotated schema elements
to structure their data or to cross-reference relevant
instances (e.g. compounds, small molecules, chem-
icals, or drugs) with corresponding classes in the
ChEBI ontology. Each polygon in the PolygOnto

Figure 10: Visualizing the Chemical Entities of Bi-
ological Interest Ontology (ChEBI) and its use for
integration in the Life Sciences Linked Open Data
(LSLOD) sources Each polygon here is a distinct LSLOD
data source, that uses ChEBI classes at schema and in-
stance levels. The green-colored polygon represents the set
of ChEBI classes that are used in the PubChem data source.

visualization (Figure 10) refers to a distinct LSLOD
source. The PubChem data source [38] is high-
lighted in green since we further analyze the use
of ChEBI in that source in our second scenario.

Usage of the ChEBI ontology (54,847 classes in
the January 2015 version) is quite varied across the
sources with the number of classes used for anno-
tations ranging from 16 in BioSamples to 44,305 in
PubChem (median ≈ 3, 125, std. dev. ≈ 13, 675).
This is likely due to the different purposes for which
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Figure 11: Visualizing the distributions of PubChem assay counts that use compounds annotated by ChEBI
classes. These distributions are grouped according to the depth of the ChEBI ontology, with each box plot representing
the distribution of PubChem assay counts for the set of ChEBI classes at a given ontological depth. The median for each
distribution is shown above the plot, and the colors are alternated for visual discernibility. It can be clearly observed that the
PubChem database uses ChEBI classes for annotation from the lower levels of the ontological hierarchy.

the LSLOD sources have been developed. For ex-
ample, DrugBank is a database of drugs and its
molecular properties and may only have cross refer-
ences to relevant drug-based classes present in the
ChEBI ontology [39]. The varying shapes of the
different polygons in the PolygOnto visualization
depict this observation.
Compared with Figure 7b, which visualized

WebUI Access, API Access, and Reuse, for the
ChEBI ontology, Figure 10 indicates that classes
in the lower layers of the ChEBI hierarchy are ac-
tually used for annotation in several sources in the
LSLOD cloud. However, the classes in the upper
layers of the ChEBI hierarchy (≈ 1, 000 classes) are
rarely used in these sources, and may be deemed
too abstract for actual biomedical research. Most
LSLOD sources in our study start using classes from
Layer 3 of the ontological hierarchy. It should be
noted that, in ChEBI, the upper layer classes are
not reused from other upper level ontologies, such
as the Basic Formal Ontology.
Scenario 2. PubChem compound annota-
tions. We observe a similar usage behavior in a sec-
ond scenario when we analyzed the usage of ChEBI
classes to annotate the compounds used in Pub-
Chem biological assays. In Figure 11, we visualize

the distributions of assay count data (i.e. num-
ber of biological assays that use a compound an-
notated with a particular ChEBI class) and group
the distributions according to the ontological depth
of ChEBI. We show the median number of assays
that use a particular ChEBI-annotated compound
on the top of each distribution. Further, we see
that classes, located after Layer 10 of the ChEBI
ontological hierarchy, are significantly used for the
annotation of PubChem compounds. The median
number of biological assays that use a particular
compound annotated with a ChEBI class from Lay-
ers 11–23, ranges from 4–8 assays, compared to 0–2
for ChEBI classes in Layers 1–10.

Unlike the results for EFO (Section 5.4.1) sce-
nario, we observe a minimal or negative correlation
between the use of ChEBI classes in the LSLOD
cloud and the browsing and querying behaviors of
the BioPortal users, as well as reuse data for the
ChEBI ontology (Table 4). Similarly, the correla-
tion statistics obtained for the second ChEBI sce-
nario, between the use of ChEBI to annotate com-
pounds in the PubChem data source and the ChEBI
browsing, querying and reuse data, are also minimal
and negative. The adjusted Spearman correlation
statistics slightly increase, especially when compar-
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ing the usage attributes to the reuse attribute.
The contrasts between usage and the other at-

tributes might be the reason for the negative Spear-
man correlation statistics (i.e. no upper layer
classes used in both scenarios). These statistics
increase on adjusting our ChEBI class sets to in-
clude only those classes that are used in the scenar-
ios (Table 4). However, because these correlation
statistics are much lower compared to our EFO us-
age scenario, our third hypothesis is refuted for the
two ChEBI-based usage scenarios.

6. Discussion

We have investigated how researchers explore,
query, use and reuse ontologies in BioPortal by
conducting an exploratory visual empirical analy-
sis of large-scale interaction data. We used scat-
ter plots (Figure 5 and Figure 8) to learn whether
users more frequently explore ontologies via the
BioPortal WebUI or query them over the API. We
used box plots to analyze Spearman correlation co-
efficients and Jaccard similarity (Figure 6) for in-
vestigating correlation and overlap among informa-
tion consumption strategies across different inter-
faces of BioPortal and ontologies. We visually in-
spected exploration, query and reuse strategies of
thousands of different users for four different on-
tologies (Figure 7) using PolygOnto visualizations.
Finally, we analyzed the usage of EFO for annotat-
ing the GWAS Catalog, and the usage of ChEBI for
data integration through the LSLOD cloud and the
annotation of compounds used in biological assays
stored in PubChem database (Section 5.4).

6.1. Exploring, Querying and Reuse
We found that the Spearman Correlation statis-

tics for all ontologies for the Reuse versus WebUI
Access and Reuse versus API Access comparisons
are significantly lower than the Spearman corre-
lation statistics for the WebUI Access versus API
Access comparison. Both the Spearman correla-
tion and the Jaccard Similarity statistics are gen-
erally lower with a median of ≈ 0.1. Hence, from a
BioPortal perspective, we can assert that the classes
that are reused the most in other ontologies are
not the same classes that BioPortal users explore or
query more often. This insight also suggests a neg-
ative answer to our first research question: RQ1:
Do BioPortal WebUI exploration and API
querying inform reuse?

A possible explanation for this finding is that
most reused classes are at a more abstract level, or
originate from upper level ontologies. Such classes
may not be useful to biomedical researchers in their
applications (hence less BioPortal exploration and
API querying). The main purpose of upper-level
ontology class reuse is to extend the interoperability
among ontologies. Researchers can directly search
for their classes of interest by exploring an ontology
using the BioPortal WebUI or querying the API.
Note that both the Basic Formal Ontology (BFO)
and the Semantic Types Ontology (STY), which are
used as upper-level ontologies in OBO and UMLS
ontologies, have higher proportions of classes ex-
plored and queried, and exhibit higher values for
the Spearman and Jaccard statistics (Figure 5b).

OBO and OWL ontologies have lower Spear-
man correlation and Jaccard similarity statistics for
the Reuse versus WebUI Access comparison when
compared to the UMLS terminologies. The on-
tologies in the former group use the IRI method
to reuse classes, whereas for the latter group, do-
main experts map similar classes a posteriori using
the same CUI. The fact that the CUI mappings
are generated a posteriori may help identify more
cases of reuse than does IRI reuse mapping (which
typically happens at the time the ontology is au-
thored). OBO ontologies have significantly higher
Spearman correlation statistics than OWL ontolo-
gies, which might indicate the importance of guide-
lines for reuse.

Knowing that the upper layers of the ontologies
are of less interest to biomedical researchers could
prove useful to BioPortal developers. For example,
a filtering option could hide all the abstract classes
of BFO or other upper level ontologies when they
appear as part of an ontology.

We need to carry out further investigations to
understand why certain classes were queried us-
ing the API but were never explored using the
WebUI during the same period of time— and vice
versa. For example, the classes Night blindness
and Dysmorphic syndrome (Figure 8) are queried
by more than 1,000 unique users via the BioPortal
API, but are never explored through the WebUI.
Such specific class queries are observed for all on-
tologies, and we may require domain expertise to
decipher the importance of these. Even though
Web UI Access versus API Access comparisons ex-
hibit slightly higher correlation values, the classes
that are explored and queried exhibit minimal sim-
ilarity, suggesting a negative answer to our second
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research question: RQ2: Do BioPortal WebUI
exploration and API querying correlate?

6.2. Ontology Use in Real-World Applications
When inspecting Figure 7, we see that classes in

the lower layers of the class hierarchies are rarely ex-
plored via the BioPortal WebUI and rarely queried
using the BioPortal API. This observation may lead
to further questions regarding the utility of more
specific classes in ontologies, if they are not of
interest to domain users (Figure 7, Figure 9).
However, in Section 5.4.2, we observed that spe-

cialized classes in the lower layers of the ChEBI
ontological hierarchy are used significantly more
in two real-world usage scenarios (Section 5.4.2).
These observed contrasts between user interactions
with different consumption strategies (WebUI and
API), and actual usage may open new research av-
enues to determine whether the conventional inter-
action methods (e.g. Indented Tree visualization)
are actually fulfilling user needs, and whether new
methods need to be developed to replace them.
In the case of the Experimental Factor Ontol-

ogy, actual usage yielded higher Spearman Corre-
lation statistics and similar usage patterns, when
compared to users’ browsing and querying behav-
iors. Classes in lower levels of the EFO hierarchy
are not used in the annotation of GWAS studies,
since GWAS studies are generally conducted using
a large cohort of patients for achieving adequate
statistical power [43]. Hence, if a more specific trait
(i.e., one that appears lower in the EFO hierarchy)
is examined, the investigators of the study may have
fewer patients to conduct a GWAS. The high cor-
relation statistics observed between the usage for
GWAS annotations and other attributes (access or
reuse) does not indicate causality. It is impossi-
ble to determine if the classes are increasingly ex-
plored, queried or reused because they were used
for GWAS annotations, or whether GWAS studies
were conducted because the traits were popularly
browsed or searched.
We cannot definitely answer our third research

question (RQ3: Do BioPortal WebUI explo-
ration and API querying inform usage?) since
different usage scenarios may exhibit different us-
age patterns. To further strengthen the generaliza-
tion of our results, more analyses need to be car-
ried out on datasets generated by other applica-
tions. To encourage other researchers to continue
this research, we have processed and published
the user interaction datasets used in this study

at: http://onto-apps.stanford.edu/bionic un-
der the Creative Commons CC-BY-NC-SA license
[11]. We have also released the source code used to
generate the statistics and the visualizations in this
paper at: https://github.com/maulikkamdar/
PolygOnto. We will soon provide a packaged solu-
tion for generating PolygOnto visualizations given
an ontology and relevant datasets.

6.3. Limitations and Future Work
Note that this analysis is limited to BioPortal.

Some users might prefer to explore or query cer-
tain ontologies using other platforms (e.g., the
AmiGO browser [44] for Gene Ontology, or On-
tology Lookup Service [45] for ChEBI), which pro-
vide custom tailored or more specialized interfaces
for the task of browsing and querying ontologies.
Hence, we may register fewer requests on BioPortal
for these ontologies. Moreover, the user interactions
with BioPortal WebUI may be biased by the current
Indented Tree visualization used for exploration.

There are certain limitations to our empirical
analysis. By generating a high-level abstract rep-
resentation using PolygOnto visualizations (Fig-
ure 7), we lose information, such as the class-level
counts (i.e., number of times a particular class was
accessed in an ontology), that can be easily visu-
alized in a scatter plot (Figure 8). We also lose
information regarding the location of each class in
the class hierarchy by generalizing it to the max-
imum depth attribute. In certain cases, the leaf
classes in a given ontology might be located in the
middle layers of the ontology because there may be
classes with a higher maximum depth attribute.

For future work, we plan to evaluate the utility of
PolygOnto for ontology engineers, ontology reposi-
tory developers, and biomedical researchers by con-
ducting a large-scale user study. We have created
an interactive Web-based visualization2 for such an
evaluation, where users may use the scatter plot vi-
sualizations to explore count-based data for specific
ontology classes, and may use the PolygOnto visual-
ization to visually investigate higher-level abstract
patterns as demonstrated in this work.

7. Conclusion

We have conducted an empirical analysis of re-
quest, query and reuse data of large-scale ontolo-
gies on BioPortal and demonstrated how several

2http://onto-apps.stanford.edu/vision/
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different visualization techniques can be used to
explore, analyze and improve our understanding
of how users interact with biomedical ontologies.
While ontology browsing, ontology querying and
ontology reuse seem to minimally align with each
other in our datasets, similarities and differences in
the patterns of user exploration, querying and reuse
can be observed through our visualization methods.
However, these patterns may diverge significantly
when they are compared to real-world research use
cases in the biomedical domain. To the best of our
knowledge, this is one of the largest studies to in-
vestigate how users interact with large biomedical
ontologies through different modes and for different
purposes and downstream applications. Our analy-
ses and methods open new avenues for research into
user interactions with ontologies, and will serve as a
foundation for future research into the development
of intelligent interfaces for ontology exploration and
querying.
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